Smoothing of multiple structures on embedded Enriques manifolds
نویسندگان
چکیده
We show that given an embedding of Enriques manifold index d in a large enough projective space, there will exist embedded multiple structures with conormal bundle isomorphic to the trace zero module universal covering map, cover being either hyperkähler or Calabi–Yau manifold. then these (also known as d-ropes) can be smoothed smooth manifolds respectively. Hence we obtain flat family (or Calabi–Yau) same space which degenerates d-rope structure on d. The above shows are points Hilbert scheme containing fibres family. they when $$d=2$$ .
منابع مشابه
Empty Real Enriques Surfaces and Enriques-einstein-hitchin 4-manifolds
N. Hitchin [H] proved that the Euler characteristic χ(E) and signature σ(E) of a compact orientable 4-dimensional Einstein manifold E satisfy the inequality |σ(E)| 6 2 3χ(E), the equality holding only if either E is flat or the universal covering X of E is a K3-surface and π1(E) = 1, Z/2, or Z/2× Z/2. In the latter cases, E is a K3-surface if π1 = 1, an Enriques surface if π1 = Z/2, or the quot...
متن کاملAlgebraic Structures on Hyperkähler Manifolds Algebraic Structures on Hyperkähler Manifolds
Let M be a compact hyperkähler manifold. The hy-perkähler structure equips M with a set R of complex structures parametrized by CP 1 , called the set of induced complex structures. It was known previously that induced complex structures are non-algebraic, except may be a countable set. We prove that a countable set of induced complex structures is algebraic, and this set is dense in R. A more g...
متن کاملGeometric structures on manifolds
This document is a sample prepared to illustrate the use of the American Mathematical Society’s LTEX document class amsbook and publication-specific variants of that class.
متن کاملStructures on Manifolds � � � � � � � � � � �
This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in T E X by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index. Numbers on the right margin correspond to the original edition's page number...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2021
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-021-02818-3